
fullName:_______________________________andrewID:_______________________________

recitationLetter:______

submissionCode:__________________

Quiz 5
You MUST hand in this entire quiz when instructed in lecture. Failure to do so will be

considered cheating.

Part 1: Code Tracing
You may not run any code in Part 1 or Part 2 at any time. Note that there are two FRs.

Save time for them.

CT1: Code Tracing [15pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box

below. Note that you may not run this code.

#prints 2 lists containing lists
import copy
def ct1(L):
 a = L
 b = copy.copy(L)
 c = copy.deepcopy(L)
 b[0] = a[1] * a[1][0]
 a[0][0] += a.pop()[0]
 b[1] = c[0]
 return b
Be careful to get the brackets and commas right!
L = [[1],[2],[3]]
print(ct1(L))
print(L)

CT2: Code Tracing [15pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box

below. Note that you may not run this code.

Prints 1 list which may contain anything
def ct2():
 a = []
 for i in range(1,4):
 b = [i]
 for j in range(i):
 if j % 2 == 0:
 b.append(j)
 else:
 a.append(j)
 a.append(b)
 return a
print(ct2())

Part 2
Note: Part 3 is a (very challenging) bonus code tracing problem worth 2 points.

Once you move on, you may not return to Part 1 or Part 2.

Free Response 1: wordSearch [25pts]
We have provided the outer and inner functions from the word search case study. Write

the missing middle helper function wordSearchFromCell so that wordSearch(board, row)

works properly.

Remember that wordSearch(board, word) takes board (a 2d list of lowercase letters) and

word (a non-empty string of lowercase letters) and returns a tuple that contains the

word, (startRow, startCol) as a tuple, and a string describing the direction. We may test

your code using cases not shown here. You must not modify the helper functions we

have provided.

This problem is worth relatively few points, so you should not spend all your time on it.

Note that as long as your code is functional without modifying wordSearch or

wordSearchFromCellInDirection, it is fine if your variable names and code do not

perfectly match ours. Do not hardcode.

#Do not modify this function!
def wordSearch(board, word):
 (rows, cols) = (len(board), len(board[0]))
 for row in range(rows):
 for col in range(cols):
 result = wordSearchFromCell(board, word, row, col)
 if (result != None):
 return result
 return None

#Write the missing helper function below the supplied test cases
def wordSearchFromCell():
 return 42

#Do not modify this function!
def wordSearchFromCellInDirection(board, word, startRow, startCol, drow, dc
 (rows, cols) = (len(board), len(board[0]))
 dirNames = [["up-left" , "up", "up-right"],
 ["left" , "" , "right"],
 ["down-left", "down", "down-right"]]

 for i in range(len(word)):
 row = startRow + i*drow
 col = startCol + i*dcol
 if ((row < 0) or (row >= rows) or
 (col < 0) or (col >= cols) or
 (board[row][col] != word[i])):
 return None
 return (word, (startRow, startCol), dirNames[drow+1][dcol+1])

def testWordSearch():
 print('Testing wordSearch(board, row)...', end='')
 board = [['d', 'o', 'g'],
 ['t', 'a', 'c'],
 ['o', 'a', 't'],
 ['u', 'r', 'k'],
]
 assert(wordSearch(board, "dog") == ('dog', (0, 0), 'right'))
 assert(wordSearch(board, "cat") == ('cat', (1, 2), 'left'))
 assert(wordSearch(board, "tad") == ('tad', (2, 2), 'up-left'))
 assert(wordSearch(board, "cow") == None)
 print('Passed!')
testWordSearch()

Free Response 2: zeroRectCount(L) [45pts]
Background: given a 2d list of integers L, we will say that a rectangular region of L is a

"zeroRect" (a coined term) if the sum of the values in that region equals 0. For example,

consider this list:

 L = [[1, 2, -3, 5, 1],
 [3, -6, 4, 0, 1]]

Here are the rectangular regions of L that sum to 0:

 R1 = [[1, 2, -3]] # 1x3 in top-left of L

 R2 = [[1, 2], # 2x2 in top-left of L
 [3, -6]]

 R3 = [[0]] # 1x1 near bottom-right of L

With this in mind, write the function zeroRectCount(L) that takes a rectangular 2d list of

integers L, and returns the total number of zeroRects in L. For example, with L as above,

zeroRectCount(L) returns 3.

Hint: while you may solve this any way you wish, our sample solution used a large

number of nested 'for' loops to try all possible rectangles (so don't be discouraged if

your solution does so as well).

You may not import or use any module other than copy. You may not use any method,

function, or concept that we have not covered this semester. We may use additional test

cases not shown here. Do not hardcode.

Note: almostEqual(x, y) and roundHalfUp(n) are both supplied for you.
You must write all other helper functions you wish to use.
def almostEqual(d1, d2, epsilon=10**-7): #helper-fn
 return (abs(d2 - d1) < epsilon)

import decimal
def roundHalfUp(d): #helper-fn
 # Round to nearest with ties going away from zero.
 rounding = decimal.ROUND_HALF_UP
 return int(decimal.Decimal(d).to_integral_value(rounding=rounding))

import copy
#---------------

#Write your function below the supplied test cases
def zeroRectCount(L):
 return 42

def testZeroRectCount():
 print('Testing zeroRectCount(L)...', end='')
 L = [[42]]
 assert(zeroRectCount(L) == 0)
 L = [[0]]
 assert(zeroRectCount(L) == 1)
 L = [[-3, -1, 2, 3]]
 assert(zeroRectCount(L) == 0)
 L = [[-3, -1, 1, 3]]
 assert(zeroRectCount(L) == 2)

 L = [[1, 2, -3, 5, 1],
 [3, -6, 4, 0, 1]]
 assert(zeroRectCount(L) == 3)

 L = [[1, 2, -3, 5],
 [3, -6, 4, 0],
 [-4, 6, 1, -9]]
 assert(zeroRectCount(L) == 7)
 print('Passed!')

testZeroRectCount()

Bonus Part 3
This part is optional. You may not return to Parts 1 or 2.

bonusCT1: Code Tracing [2pts]
This question is optional. Indicate what the following code prints. Place your answers

(and nothing else) in the box below. Note that you may not run this code.

def bonusCt1(n, b):
 while (b[-1]**0.5 < 1+2+3):
 n += 1;
 b = [sum([list(range(k))
 for k in range(n)][i][:i-1])
 for i in range(n)]
 return b[-3]
print(bonusCt1(10, [1]))

