
15-110 Midterm – Spring 2019
50 minutes

Name: ______________________________

Andrew ID: _______________@andrew.cmu.edu

Section: _______

• You	may	not	use	any	books,	notes,	or	electronic	devices	during	this	exam.		

• You	may	not	ask	questions	about	the	exam	except	for	language	clarifications.	

• Show	your	work	on	the	exam	(not	scratch	paper)	to	receive	credit.
• If	you	use	scratch	paper,	you	must	submit	it	with	your	andrew	id	on	it,	and	we	will	ignore	it.	
• All	code	samples	run	without	crashing.		Assume	any	imports	are	already	included	as	required.
• Do	not	use	these	post-midterm1	topics:		strings,	lists,	etc.		You	may	use	strings	and	lists.

DO NOT WRITE IN THIS AREA

Part 1 (CT) 10 points

Part 2 (Multiple Choice) 20 points

Part 3 (FR / nonLetterCount) 20 points

Part 4 (FR / Moving Rectangle) 20 points

Part 5 (FR / Add/Delete Circles) 30 points

Part 6/bonus 5 points bonus

 Total	 100 points

	

1. [10	pts;	3	pts	for	ct1	and	ct2,	4	pts	for	ct3]	Code	Tracing	
Indicate	what	each	will	print.	Place	your	answer	in	the	boxes	below	each	block	of	code.		Show	your	
work,	outside	the	box,	for	partial	credit.	
	

def	ct1(m,	n):	
				result	=	0	
				while	(n	>	m):	
								n	-=	3	
								result	+=	n	
				return	result	
print(ct1(5,	14))	

	

	
	
	

def	ct2(n):	
				L	=	[]	
				for	x	in	range(1,	n):	
								if	(n	%	x	==	0):	
													L.append(x)	
				for	i	in	range(len(L)):	
								L[i]	*=	10**i	
				return	L	
print(ct2(10))	

	

	
	
	

def	ct3(s):	
				t	=	''	
				for	c	in	s:	
								if	((s.count(c)	>	1)	and		
												(c.isalpha()	==	True)):	
												t	+=	c	
				return	t	
print(ct3('Who	knows	it?	I	do!'))	

	

	
	

2. [20	pts;	2	pts	each]	Multiple	Choice	
Circle	the	letter	of		the	correct	answer.	
	
	

1.	Using	sign-magnitude,	1101	in	binary	is	________	in	decimal.	

			A.	13								B.	-13							C.	12							D.	-12							E.	5							F.	-5							G.	None	of	these	

	
	
	
2.	Each	value	in	an	RGB	color	must	be	an	integer	from	0	to	255,	inclusive.	

				From	this,	we	conclude	that	each	value	is	represented	using	______	bits.	

			A.	256							B.	20							C.	10							D.	5							E.	None	of	these	

	
	

3.	Which	of	the	following	can	be	used	to	perform	subtraction?	

			A.	Lattice						B.	10's	Complement						C.	Parity							D.	Nim						E.		Coin	flips	

	
	

4.	Which	of	the	following	can	be	used	to	detect	errors	when	transmitting	data?	

			A.	Lattice						B.	10's	Complement						C.	Parity							D.	Nim						E.		Coin	flips	

	
	

5.	Circle	ALL	of	the	following	that	are	methods	we	learned	to	represent	strings:	

			A.	Zero	Terminated						B.	Zero	Prefixed						C.	Length	Terminated						D.	Length	Prefixed	

	

6.	In	our	example	circuit	that	added	two	one-bit	numbers,	the	right	bit	(one's	digit)	

					of	the	answer	was	computed	using	a(n)	_______	gate.	

			A.	AND									B.	OR									C.	NOT									D.	XOR									E.	NAND								F.	None	of	these	

	
	

7.	Since	our	memory	circuit	in	the	notes	loses	its	memory	when	the	power	is	lost,	

			we	say	that	it	is	______.	

			A.	Bad									B.	Volatile									C.	Lossy									D.		Powerful									E.	None	of	these	

	
	

8.	When	we	compute	big-oh,	we	ignore	constants	and	we	also	ignore	__________.	

			A.	lower-order	terms									B.	logs									C.		higher-order	terms									D.	None	of	these	

	
	

9.	Since	linear	search	is	O(n)	and	binary	search	is	O(logn),	for	very	large	sorted	

			lists,	we	would	expect	linear	search	to	be	________	than	binary	search.	

			A.	much	faster						B.	a	little	faster					C.	about	the	same						D.	a	little	slower						E.	much	slower	

	
	

10.	In	the	worst	case,	Selectionsort	is	O(n**2)	and	Mergesort	is	____________.	

			A.	O(n**2)									B.		O(nlogn)									C.		O(n)									D.		O(logn)										E.	None	of	these	
	
	
	
	
	

3. [20	pts]	Free	Response:		nonLetterCount(s)	

Write	the	function	nonLetterCount(s)	that	takes	a	string	s	and	returns	a	count	of	the	number	of	
characters	in	s	that	are	not	letters,	but	only	count	each	such	character	once	even	if	it	occurs	multiple	
times	in	s.		For	example,	nonLetterCount('This	is	a	test!!')	returns	2	(space	and	exclamation	mark).	

4. [20	pts]	Free	Response:		Moving	Rectangle	
	
Note:	Do	not	assume	the	canvas	size.		Instead,	use	data.width	and	data.height.	
Starting	from	our	starter	code,	write	the	functions	init,	timerFired,	and	drawAll	so	that:	

• A	100x20	red	rectangle	starts	in	the	right-bottom	corner	of	the	canvas.	

• The	rectangle	moves	up	10	pixels	at	a	time,	and	stops	moving	up	when	its	top	reaches	the	canvas	
top.	

• At	that	point,	the	rectangle	moves	left	10	pixels	at	a	time	until	its	left	reaches	the	canvas	left.	

• When	the	rectangle	reaches	the	left-top	corner,	it	remains	there	from	then	on.	
	
Note:	you	can	use	the	next	page	if	you	wish.	

(This	page	is	blank)	

5. [30	pts]	Free	Response:		Add/Delete	Circles	
	
Note:	In	the	app	below,	you	must	store	the	circles	in	the	list	data.circles,	and	each	circle	must	be	an	
instance	of	a	Circle	class	that	you	create.	
Hint:	your	Circle	class	should	look	something	like	this:	
		class	Circle(object):	
				def	__init__(circle,	cx,	cy,	r):	
												...	
	
With	that	in	mind,	starting	from	our	starter	code,	write	the	functions	init,	keyPressed,	
mousePressed,	and	drawAll	so	that:	

• The	canvas	is	empty	at	the	start	with	a	green	background.	

• There	are	two	modes	--	Add	Mode	and	Delete	Mode.		We	start	in	Add	Mode.	Each	time	any	key	is	
pressed,	the	mode	toggles	to	the	other	mode.	

• The	background	is	green	when	in	Add	Mode,	and	red	when	in	Delete	Mode.	

• On	a	mouse	press	while	in	Add	Mode,	we	add	a	circle	of	radius	20	centered	on	the	mouse	press	
location.	

• On	a	mouse	press	while	in	Delete	Mode,	if	there	are	any	circles	left,	we	find	the	nearest	circle	to	
the	mouse	press	and	delete	it	(if	two	circles	are	the	same	distance	from	the	mouse	press,	you	can	
delete	either	one).	
	
Note:	you	can	use	the	next	page	if	you	wish.	

(This	page	is	blank)	

6. Bonus/Optional:		[2.5	pts]		What	will	this	print?		Clearly	circle	your	answer.	
	
#	hint:	bin(27)	is	'0b11011'	
def	bonusCt1(n):	
				i	=	0	
				for	z	in	range(2**n):	i	+=	bin(z).count('1')	
				return	i	
print(bonusCt1(10))	
	
	
	
	
	
	
Bonus/Optional:		[2.5	pts]		What	will	this	print?		Clearly	circle	your	answer.	
	
def	bonusCt2(L):	
				d	=	L.pop()	
				while	(str(L).count(str(d))	<	3**d):	L.append(L*3)	
				return	L[-1][-1]	
print(bonusCt2([1,2,3,2]))	
	

