
15-112: Practice Final Exam Questions

Angela Zhang (afzhang) and Michael Choquette (mchoquet)

May 3, 2014

True or False

a. TRUE or FALSE: Anything computed with recursion can also be computed without recursion.

b. TRUE or FALSE: If we changed floodFill so that sometimes it recursed in the order up/down/left/
right, and other times it recursed in the order up/left/right/down, it would sometimes fail to
completely floodFill some regions.

c. TRUE or FALSE: A set can be a key in a dictionary, but a dictionary cannot be added to a set.

d. TRUE or FALSE: In our version of Model-View-Controller animations, we stored our model in
canvas.data, and we called various canvas methods in our view.

e. TRUE or FALSE: Any binary number that ends in a 1 must be odd.

f. TRUE or FALSE: Without canvas.delete(ALL) in our redrawAll function, our animation would
get progressively slower.

g. TRUE or FALSE: Any binary number that contains exactly one 1 must be a power of 2.

h. TRUE or FALSE: Lambda functions cannot call themselves.

i. TRUE or FALSE: If x and y are positive integers where x < y, then (x / y) will always equal
zero and (x % y) will always equal x.

j. TRUE or FALSE: Any list of N integers, where they are all between 1 and 5, can be sorted in
O(N) time.

1

(Very) Short Answer

a. If (as in the notes) we consider a Level 0 Koch Snowflake to be just a straight line (not a
triangle, so this is really one-third of a snowflake), then sketch a Level 2 Koch Snowflake and
clearly identify all the Level 1 Koch Snowflakes within it.

b. For positive int values x, k, write an equivalent expression to (x%(2**k)) that does not use %,
*, or /.

c. What is steganography?

d. When you run a script in python, you can include the -i flag, like this: python -i foo.py. What
does the -i flag do?

e. Convert 112 into binary.

f. Given the tuple T containing an odd number of int values, write a single expression, not a
statement, that computes the median value in T. For half credit, you may write a function
instead.

g. Prove any version of DeMorgans Law using truth tables.

h. Write an expression that gives you a 15 by 112 2D list.

i. What is the runtime of the recursive Fibonacci function?

j. Sets cannot be used as a key in a dictionary. If you try using set as a key in a dictionary, an
error saying: (unhashable type: ’set’) will appear. Explain what this means and why a set is
unhashable!

k. What is the purpose of the init method?

l. Draw the first 3 levels of the Sierpinski triangle.

m. Briefly describe how A* differs from BFS.

n. What is -5 >> 2?

o. What is the big-Oh of mergesort? Why?

p. Why do we use the least significant bits in steganography?

Free Response

1. Write a function, integerSquareRoot(x), that takes a possibly-floating-point non-negative
number and returns the integer value that is nearest to its actual square root.

2. Write the function hasBalancedParentheses(s), which takes a string and returns True if that
code has balanced parentheses and False otherwise (ignoring all non-parentheses in the string). We
say that parentheses are balanced if each right parenthesis closes (matches) an open (unmatched)
left parenthesis, and no left parentheses are left unclosed (unmatched) at the end of the text. So,
for example, ”((() ()) ())” is balanced, but ”())” is not balanced, and ”()) (” is also not
balanced.

3. Write the function missingNumber(a) that takes an unsorted list of size n that contains all
but one of the integers from 1 to (n+1). Return the missing number. Your function must run in
O(n) time, so it cannot sort the list.

4. Write the function smallestDifference(a) that takes a list of integers and returns the smallest
absolute difference between any two integers in the list. If the list is empty, return -1.

5. Write the function map(f, l), which does not use the builtin map function, and which takes a
function f and a list l, and returns a new list containing f(x) for each value x in l. You may assume
all elements of l are of the same type. For example, say you defined a function plus3(x) that returns
(x+3). Then, map(plus3, [2,4,7]) returns [5,7,10].

6. Write the function reduce(f, b, l) which takes a function f, a base case b, and a list l. You may
assume all elements of l are of the same type. reduce should take the list l and return a single item
of the same type as the elements of l, using f to combine the elements with b as the base case. For
example, say you have a function add(x, y) that returns x + y. reduce(add, 0, [1,2,3]) returns 6.

7. Write the function invertDictionary(d) that takes a dictionary d that maps keys to values
and returns a dictionary of its inverse, that maps the original values back to their keys. One
complication: there can be duplicate values in the original dictionary. That is, there can be keys
k1 and k2 such that (d[k1] == v) and (d[k2] == v) for the same value v. In that case, what should
inverseD[v] equal? Answer: map the original values back to the set of keys that originally mapped
to them. Thus, in this example, inverseD[v] maps to a set containing both s1 and s2.

8. Write a function countKosbie(s) that takes a string s and returns how many instances of
kosbie (case-sensitive) occur in the string. Note, however, that koskosbiebie should return 2 since
after you remove the nested kosbie from the string it contains another instance of kosbie.

9. Write a function uniqueLetterCount(s) that takes a string s and returns the number of unique
letters, ignoring case, that occur in that String. For example, ”Wowee” contains the letters ’e’, ’o’,
and ’w’ (ignoring case), so uniqueLetterCount(”Wowee”) should return 3. Ignore all non-letters.
The null string contains no unique letters.

10. Write a recursive fib(n) function that returns the nth Fibonacci number. Then, using a
dictionary (and NOT @memoized) write a function memoizedFib(n) that computes the Fibonacci
numbers in O(n) time. Make sure to store the intermediate values, so when you compute fib(15)
you should also be able to compute fib(12) immediately!

11. Without loops or using any built-in functions, write a function listSum(a) that returns the
sum of the items in a. You may assume a is a list containing only ints.

12. Write the recursive function flatten(a), which takes a list which may contain lists (which
themselves may contain lists, and so on), and returns a single list (which does not contain any
other lists) which contains each of the non-lists, in order, from the original list.

Big-Oh Questions

Basics/General

def f0(n): #backtobasics

return str(n) * n

def f1(n): #basicfor

total = 0

for i in xrange(0, n, 3):

for j in xrange(0, i, 2):

total += i

return total

def f2(n): #basicwhile

total = 0

while (n > 0):

i = n / 2

while (i < n):

i += 1

total += i

n -= 1

return total

def f3(n): #carefulwhenloopcounting

total = 0

for i in xrange(0, n, n/50):

for j in xrange(0, i, 50):

total += j

return total

def f4(n): #sorting

a = range(n - 1, -1, -1)

return sorted(a)

def f5(n): #moresorting

a = range(n**2 - 1, -1, -1)

return sum(sorted(a)[1:n:2])

def f6(n): #sets

s = set()

for c in str(n):

s.add(c)

return len(s)

Loops

def f1(n): #weirdinnerloop

total = 0

for i in xrange(n):

for j in xrange(i**2):

total += 1

return total

def f2(n): #weirdinnerloop

total = 0

for i in xrange(0, n, 3):

x = i

while (x > 0):

total += x

x /= 2

return sum(total)

def f3(n): #bitopsarecool

x = 1

total = 0

while (x < n):

x <<= 1

y = 1

total += y

while (y < n):

y <<= 1

total += y

return total

def f4(n): #whileloopsarecool

a = range(n)

i = 0

while (i < len(a)):

if (i % 2 == 0): a.append(i)

return len(a)

def f5(n): #weirdinnerloop #outofscope

total = 0

for i in xrange(0, n, 3):

x = i

while (x < n):

total += x

x *= 2

return total

def f6(n): #lol #outofscope

x = 1

total =

while (x < n):

x *= 10

y = 1

total += str(y)

while (y < x):

y *= 10

total += str(y)

return len(total)

Recursion

def f1(n): #standard

return 1 if n < 2 else f1(n-1)

def f2(n): #standard

return 1 if n < 2 else f2(n / 2)

def f3(n): #seemsfarmiliar

return 1 if (n < 2) else f3(n-1) + f3(1) + f3(n-1)

def f4(n): #seemsfarmiliar

if (n <= 0): return 1

if (n == 1): return 2

return f4(n - 1) * f4(n - 2)

def f5(nums): #weirdshuffle #prettyhard

nums is a list of length n

if (len(nums) < 2): return nums[:]

left = nums

right = []

for i in xrange(len(nums) - 1, -1, -1):

if (i % 2 == 0): right.append(left.pop(i))

return f5(left) + f5(right)

def f6(n): #O.O #outofscope

return 1 if (n < 1) else sum([f6(i) for i in xrange(n)])

Other

def f1(n): #montecarlo

numTrials = 1000000

numSuccesses = 0

for t in xrange(numTrials):

a = range(n)

random.shuffle(a) # runs in O(n)

if (isSorted(a)): # runs in O(n)

numSuccesses += 1

return 1.0 * numSuccesses / numTrials

