
Name:_____________________________ Section:____ AndrewID:__________________

15-112 Fall 2021 Quiz 8b
* Up to 20 minutes. * No calculators, no notes, no books, no computers. * Show your work!

* No recursion
Code Tracing [15pts]: Indicate what the following code prints. Place your answers (and nothing else) in

the box to the right of the code. Note: If you must print an unordered value, we will accept all valid
possibilities
Note: this prints 2 lines!

def ct1(S):

x = set()

y = set()

z = {}

for elem in S:

if elem in x:

y.add(elem)

x.add(elem)

print(f'x:{x}')

print(f'y:{y}')

for i in range(len(S)-len(y)):

if S[i] not in z:

z[S[i]] = i

else:

z[i] = z[S[i]]

print(f'z: {z}')

S = 'bananas'

ct1(S)

1

Short Answers [4pts ea, 20pts total]:
SA1: The following is a snapshot of xSortLab

running mergeSort. What is the index of the

next value to be moved (i.e. copied)?

(Use the indices under the bars)

SA2: Arrange the following 6 Big-O efficiencies in order from fastest to slowest, given very large inputs:

O(N+1000) O(3N**0.5) O(2**N) O(7000+logN) O(20**10) O(N**2)

<Slowest__Fastest>

SA3: If f(N) runs in O(N**2), and f(2000) takes 2 seconds, how long would we expect f(6000) take?

2

SA4: The following is a snapshot of xSortLab

running selectionSort. What are the indexes

of the next two values to be swapped?

(Use the indices under the bars)

SA5: Fill in the squares to indicate whether each statement is TRUE or FALSE:
☐TRUE ☐FALSE Mergesort must complete approximately N passes before a list is sorted

☐TRUE ☐FALSE On each pass, mergesort will need to perform approximately logN
comparisons

☐TRUE ☐FALSE Mergesort is somewhat faster than selection sort, but in the same Big O
function family

☐TRUE ☐FALSE There is no comparison sorting algorithm in a faster function family
than mergesort (assuming no prior knowledge about the unsorted items
and no quantum computers)

☐TRUE ☐FALSE Mergesort runs in O(NlogN)

3

Free Response: CreditCounter Class [65 pts]
Write the CreditCounter class, which keeps track of some number of students, and how many CMU

credits they have earned. Your solution should pass the following test cases. Be sure not to hardcode,

so that any similar test code also passes.

def testCreditCounterClass():

print('Testing CreditCounter class...', end='')

Create a CreditCounter with these initial counts

sb1 = CreditCounter({'Alice':80, 'Bob':42})

assert(sb1.getCredits('Alice') == 80)

assert(sb1.getCredits('Bob') == 42)

assert(sb1.getCredits('Chee') == None)

assert(sb1.getMostCredits() == { 'Alice' }) # Set of names w/ the most credits

sb1.addScore('Bob', 40) # Bob just earned 40 more credits!

assert(sb1.getCredits('Bob') == 82) # Now he has 82 credits

assert(sb1.getMostCredits() == { 'Bob' }) # Bob has 82, Alice has 80

sb1.addScore('Chee', 64) # Chee wasn't there before, but now has 64 credits

assert(sb1.getCredits('Chee') == 64)

sb1.addScore('Chee', 18)

assert(sb1.getCredits('Chee') == 82)

assert(sb1.getMostCredits() == { 'Bob', 'Chee' }) # Bob and Chee have 82

assert(sb1.getAll() == { 'Alice':80, 'Bob':82, 'Chee':82 })

sb2 = sb1.getCopy() # This is a copy of sb1, where changes to the copy

do not affect the original, and vice versa

assert(sb2.getAll() == { 'Alice':80, 'Bob':82, 'Chee':82 })

sb2.addScore('Alice', 10) # Alice now has 90 in sb2, but still has 80 in sb1

assert(sb2.getMostCredits() == { 'Alice' })

assert(sb1.getMostCredits() == { 'Bob', 'Chee' })

print('Passed!')

testCreditCounterClass()

(You can write your answer on the next page for more space.)
4

(You may answer the FR on this page.)

5

(You may answer the FR on this page.)

Bonus/Optional: Code Tracing [+2pts]
Indicate what this prints. Place your answer (and nothing else) in the box.
class A(object):

def __init__(self, x): self.x = x

def B(self, x): self.x += self.B(x); return x + self.x

A = B

def B(self, x): self.x += 2*x; return x + 2*self.x

class B(A):

def A(self, x):

return super().A(x) + super().B(x)

def bonusCt(a): return (a.A(3), a.x)

print(bonusCt(A(4)))

print(bonusCt(B(4)))

6

