Name: Section: Andrewl|D:
15-112 Fall 2021 Quiz 4a

* Up to 25 minutes. * No calculators, no notes, no books, no computers. * Show your work!

* No recursion

Code Tracing 1 [20pts]: Indicate what the following code prints. Place your answers (and

nothing else) in the box to the right of the code.

Note: this prints 5 lines!
def cti(L):

M, N =1L, L+[1]

L[] =1

N[2] = 3

L += L

for x in [L, M, N]:

print(x)
L =[2,4]
print(cti(L))
print(L)

Code Tracing 2 [20pts]: Indicate what the following code prints. Place your answers (and

nothing else) in the box to the right of the code.

Note: this prints 5 lines

def ct2(L):
M=1]
R =L[::-1]
for k in R:

if (k in L) and (k not in M):
L.remove(k)

M. append(k)

else:
M.append(k % 3)

print(M.pop(0))
return M
L =[2,4,6]*2
print(ct2(L))

print(L)

Free Response 1: nondestructiveOddsBeforeEvens [35 pts]
Write the function nondestructiveOddsBeforeEvens(L) that takes a possibly-empty list
of integers L and nondestructively returns a new list with all the odds in L first, in the same
order they appear in L, followed by all the evens in L, again in the same order they appear
inL. So:

L =[1,2,3,4,5]:

assert(nondestructiveOddsBeforeEvens(L) == [1,3,5,2,4])

assert(L == [1,2,3,4,5]) #L does not change:
For full credit, your solution may not call the destructive version (destructiveOddsBeforeEvens)

or apply very similar logic on a copy of L

Free Response 2: destructiveOddsBeforeEvens [35 pts]
Write the function destructiveOddsBeforeEvens(L) that takes a possibly-empty
list of integers L and destructively modifies L so that all the odds in L are first, in
the same order they appear in the original list, followed by all the evens in the
original list, again in the same order they appear in L. Your function should
return None. So:

L =1[1,2,3,4,5]

assert(destructiveOddsBeforeEvens(L) == None)

assert(L == [1,3,5,2,4])

Bonus/Optional: Code Tracing [+2.5pts]
Indicate what this prints. Place your answer (and nothing else) in the box.
def bonusCt(L, M):
while L != M:
L,M = M,L
M.append(L.pop(9))
M.pop(0)
L[-1] = sum(M)
return L
print(bonusCt([1,2,3],[4,5,6]))

