Name:

15-112 Fall 2021 Midterm 2B
80 minutes

Andrew ID:

@andrew.cmu.edu

Section:

e You may not use any books, notes, or electronic devices during this exam.

e You may not ask questions about the exam except for language clarifications.

e Show your answers and work on the exam (not scratch paper) to receive credit.

e If you do use scratch paper, you must submit it with your andrew id on it, and we will ignore it.

e All code samples run without crashing unless we state otherwise. Assume any imports are

already included as required.

e Do not use imports we have not covered in class (e.g.. NumPy)

e You may use almostEqual() and roundHalfUp() without writing them. You must write everything

else.

e Do not unstaple the exam

Do not write below here

Question Points Score
1. Short Answers 1-6 10

2. Code Tracing 1 5

3. Code Tracing 2 6

4. Code Tracing 3 6

5. Code Tracing 4 6

6. Code Tracing 5 6

7. Code Tracing 6 6

8. FR1: Matrix Class 25

9. FR2: RemoveEvens(L) 20

10. FR3: Arrange(L) 10

11. BonusCT 1+2 (+2 bonus)
TOTAL 100

version B 2/18
Short Answer 1 [1 pt]:

==[10, 12, 15, 20, 0, 3, 4, 5, 7, 9]
At most, how many indices do we need to check with linear search in order to conclude that a number
is NOT in L?
O a)1
O b)4
O c)5
O d)10

Short Answer 2 [1 pt]:
==[0, 3,4,5,7,9, 10, 12, 15, 20]
At most, how many indices do we need to check with binary search in order to conclude that a number
is NOT in L?
O a)1
O b)4
O ¢)5
O d)10

Short Answer 3 [1 pts]:
For the xSortLab image below, using mergeSort, how many passes through the list have we

completed so far (using xSortLab’s implementation of mergeSort)?

O a)o
O b)1
O c)2
O d)3
O e)5
O)6
09)8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
O h)16

version B 3/18
Short Answer 4 [2 pts]:

Mark each of the following statements as True or False. Assume that N is very large.
LITRUE L[IFALSE O(N**0.5) is faster than O(N)

LITRUE [JIFALSE O(2**N) is faster than O(N**2)
LITRUE L[IFALSE 0O(100) is faster than O(N/100)
LUTRUE [JFALSE O((N**2)*logN) is faster than O(N**2)

OTRUE CFALSE O(N)is faster than O(logN)

Short Answer 5 [2 pts]:
Mark each of the following statements as True or False
LUTRUE [IFALSE Sets are unordered

UTRUE [IFALSE Checking for membership in a set is O(1)
LUUTRUE [JFALSE Sets are immutable
LITRUE [JFALSE Sets can be dictionary keys

LITRUE L[IFALSE Dictionaries and sets both use hashing

Short Answer 6 [3 pts]:
Mark each of the following statements as True or False

LITRUE [JIFALSE We can use linear search on a list with negative numbers
LITRUE L[IFALSE We can use binary search on a list with negative numbers
LUTRUE [IFALSE We can use linear search on an unsorted list

LITRUE L[IFALSE We can use binary search on an unsorted list

LITRUE L[IFALSE We can use linear search on a list with duplicates

LITRUE [JFALSE We can use binary search on a list with duplicates

version B 4/18
Code Tracing 1 [5pts]: Indicate what the following code prints by completing the partial answer in the

box below of the code. Do not place anything but your answer inside the box.
This prints one set of 5 values
def cti(s, d):
r = set()
for k in d:
if d[k] in s:
r.add(k)
r.add(d[k]**2)
return r

print(cti1({0,2,4}, {1:2, 2:1, 3:2, 5:4}))

Answer: { » s ’ s}

version B 5/18
Code Tracing 2 [6pts]: Indicate what the following code prints by completing the partial answer in the

box below of the code. Do not place anything but your answer inside the box.
#This prints a single list with 6 integers.
def ct2(L):
ifL==11:
return []
elif len(L) % 2 == O:
return [L[@]] + ct2(L[1:])
else:

return ct2(L[1:]) + [L[@]]

print(ct2([1,2,3,4,5,6]))

Answer: [, , , , ,

version B 6/18
Code Tracing 3 [6pts]: Indicate what the following code prints by completing the partial answer in the

box below of the code. Do not place anything but your answer inside the box.
#This prints a single list with 6 integers.
def ct3(L, depth=0):
if len(L) < 2:
return [v * 10**depth for v in L]
else:
i = len(L)//2
return ct3(L[:i], depth+1) + [L[i]] + ct3(L[i+1:], depth+1)

print(ct3([1,2,3,4,5,6]))

Answer: [, , , , ,

version B 7/18
Code Tracing 4 [6pts]: Indicate what the following code prints by completing the partial answer in the

box below of the code. Do not place anything but your answer inside the box.
#This prints a single list with 6 integers.
def cta(L):

return ct4Helper(L, [])

def ct4Helper(L, M):
ifL==1[1]:
return M
else:
M.append(sum(L))
return ct4Helper(L[1:], M)

print(ct4([1,2,3,4,5,6]))

Answer: [, , , , ,

version B 8/18
Code Tracing 5 [6pts]: Indicate what the following code prints by completing the partial answer in the

box below of the code. Do not place anything but your answer inside the box.
This prints one dictionary
containing two key/value pairs
def ct5(L):

d = dict()

for i in range(len(L)):

for j in range(i+1l, len(L)):
if L[1i] == L[]]:
dli+j] = (1,3)
return d

print(ct5([2,1,2,3,4,3]))

Answer: { : ,

version B 9/18
Code Tracing 6 [6pts]: Indicate what the following code prints by completing the partial answer in the

box below of the code. Do not place anything but your answer inside the box.
#This prints one string in the form of:

#Foo<z=__, s='"__ ">
#...but with the blanks filled in
class Foo(object):
def __init_ (self, x, s):
self.z = x+1
self.s = s
def _ repr_ (self):
return f'Foo<z={self.z}, s={repr(self.s)}>'
def bar(self, other):
return Foo(self.z * other.z, self.s + other.s)
def ctée(k):
return Foo(k,str(k)).bar(Foo(k+1, 'owo"'))
print(str(ct6(5)))

Answer: Foo<z= , S= >

version B 10/18
Free Response 1: Matrix Class [25pts]

Write the class Matrix so that the following test code passes. Hardcoding will not receive any credit.
Your code must work in general, not just for the specific values in the test cases. We have provided
headers and space for each of the methods you should write. Add the proper arguments and code for

each.

def testMatrixClass():
print('Testing Matrix class...', end="'")

ml = Matrix([[1,2,3],[4,5,6]])

assert(str(ml) == '<2x3 Matrix: [[1, 2, 3], [4, 5, 6]]>")
assert(ml.rows == 2)
assert(ml.cols == 3)

assert(ml.getRow(®) == [1,2,3])
assert(ml.getCol(0) == [1,4])
assert(ml.getRow(5) == ml.getCol(42) == None) # handle out-of-bounds indexes

m2 = Matrix([[10,20,30],[40,50,60]]) # make another matrix
assert(str(m2) == '<2x3 Matrix: [[10, 20, 30], [40, 50, 60]]>")

m3 = ml.addMatrix(m2) # create new Matrix instance where each
value in ml is added to the corresponding

value in m2

assert(str(m3) == '<2x3 Matrix: [[11, 22, 33], [44, 55, 66]]>")
Be sure the previous operation was non-destructive:

assert(str(ml) == '<2x3 Matrix: [[21, 2, 3], [4, 5, 6]]>")

m4 = Matrix([[1]])
assert(str(m4) == '<1x1 Matrix: [[1]]>")
assert(ml.addMatrix(m4) == None) # handle mismatched dimensions when adding

print('Passed!")

Begin your answer on the next page!

version B 11/18
(Answer FR1: Matrix Class on this page. Remember to add arguments in the parentheses!)

class Matrix:

def _init_ ()

def _repr_ ():

Continue your answer on the next page!

version B 12/18
(Answer FR1: Matrix Class on this page. Remember to add arguments in the parentheses!)

def getRow():

def getCol():

Continue your answer on the next page!

version B 13/18
(Answer FR1: Matrix Class on this page. Remember to add arguments in the parentheses!)

def addMatrix():

version B 14/18
Free Response 2: Recursive Functions [20pts]

Part 1: The following recursive function takes a list L of integers, and non-destructively returns a new
list M which is the same as L but with all the even numbers removed.

For example, if L==[1, 2, 3, 4, 5], the function returns [1, 3, 5].

Fill in the blanks with the missing code (all blanks must be filled with a single line, statement or

expression -- you may not add new lines to the code):

def removeEvens1(L):
if (L==1[1:
return []
else:

if L[0] % 2 == ©:

return # Blank 1

else:

return # Blank 2

Part 2: The following function does the same thing, only in a different way.

Once again, fill in the blanks so that this function works properly:

def removeEvens2(L):

return removeEvens2Helper(L, [])

def removeEvens2Helper(L, M):

if (L==1 1):
return M
else:
if : # Blank 1

Blank 2

return removeEvens2Helper(L[1:], M)

version B 15/18
Part 3: The following function does the same thing again, only this time

it is destructive, so it returns None while directly removing the evens from L.

Fill in the blanks so it works properly:

def removeEvens3(L, i=0):
if i >= len(L):
return
else:
if L[i] % 2 ==

Blank 1

else:

Blank 2

removeEvens3(L, i)

version B 16/18
Free Response 3: arrange(L) [10pts]

Note: This is a backtracking problem. Loops are allowed. You are provided with a partial solution to this
problem, with a few parts removed.
Fill in the blanks with the missing code (all blanks must be filled with a single line, statement or

expression -- you may not add new lines to the code).

Using backtracking, complete the function arrange(L, d) that takes a list L of integers and an integer d,
and returns a new list M composed of the same values in L but rearranged so that the absolute
difference between each two consecutive values in M is d or smaller. Return None if no such

arrangement exists.

For example, arrange([1,5,2,-1], 3) can return [1,-1,2,5] because
e abs(l - (-1)) == 2 and 2 <= 3
e abs((-1) - 2) == 3 and 3 <= 3
e abs(2 - 5) == 3 and 3 <=3
Note that other legal arrangements may exist. You may return any legal arrangement. Note that

backtracking does not generate every possible arrangement of L.

Also, arrange([1,5,1,-1], 3) returns None, because there is no arrangement of values that works for this

list.

Hint: We start with an empty list for M and keep trying to add one more value from L to M (and
removing it from L if it is used in M), verifying that M still is a legal arrangement.
Our solution uses destructive methods to add and remove elements from remainingList and

resultSoFar.

Write your answer on the next page!

version B 17/18
(This is part of FR3 on the previous page. Fill in the blanks!)

def arrange(L, d):
return solve([], copy.copy(L), d)

def solve(resultSoFar, remaininglList, d):

if remaininglist == []:

return # Blank 1

else:
#For each remaining element
for i in range(len(remaininglList)):
#Get element for next attempted move
v = remaininglist[i]

if ((resultSoFar == []) or

: # Blank 2
remaininglList.pop(i) # remove v from the remaining list
resultSoFar.append(v) # and add it to the resultSoFar list

Blank 3
if : # Blank 4
return result #Hint: You need to define result somewhere

#Undo the move if no solution
remaininglist.insert(i, v) # replace v in the remaining list

resultSoFar.pop() # and remove it from the resultSoFar list

return None

version B 18/18

Bonus/Optional Code Tracing 1 [1pts]
Indicate what this prints. Place your answer (and nothing else) in the box.
def bonusCtl(k):

def f(n): return n%10*f(n//10) if n else 1

def g(n): return g(n//2)+[str(n%2)] if n else []

def h(n): return int(''.join(g(f(n))) or '0")

def i(k): return h(2**k) or i(k+1)

return i(k)
print(bonusCt1(10))

Bonus/Optional Code Tracing 2 [1pts]
Indicate what this prints. Place your answer (and nothing else) in the box.
def bonusCt2(L):
Hint: str([[21,2],[3,4]]) == "[[1, 2], [3, 4]]'
if len(str(L)) > 128:
return len(str(L))
else:
return bonusCt2([[L],[L]])
print(bonusCt2([1,2]))

