15-112 Fall 2021 Midterm 2B

80 minutes

Name:

Andrew ID: \qquad @andrew.cmu.edu

Section:

- You may not use any books, notes, or electronic devices during this exam.
- You may not ask questions about the exam except for language clarifications.
- Show your answers and work on the exam (not scratch paper) to receive credit.
- If you do use scratch paper, you must submit it with your andrew id on it, and we will ignore it.
- All code samples run without crashing unless we state otherwise. Assume any imports are already included as required.
- Do not use imports we have not covered in class (e.g.. NumPy)
- You may use almostEqual() and roundHalfUp() without writing them. You must write everything else.
- Do not unstaple the exam

Do not write below here

Question	Points	Score
1. Short Answers 1-6	10	
2. Code Tracing 1	5	
3. Code Tracing 2	6	
4. Code Tracing 3	6	
5. Code Tracing 4	6	
6. Code Tracing 5	6	
7. Code Tracing 6	6	
8. FR1: Matrix Class	25	
9. FR2: RemoveEvens(L)	20	
10. FR3: Arrange(L)	10	
11. BonusCT 1+2	$(+2$ bonus)	
TOTAL	100	

Short Answer 1 [1 pt]:

$\mathrm{L}==[10,12,15,20,0,3,4,5,7,9]$
At most, how many indices do we need to check with linear search in order to conclude that a number is NOT in L ?a) 1b) 4c) 5d) 10

Short Answer 2 [1 pt]:

$\mathrm{L}==[0,3,4,5,7,9,10,12,15,20]$
At most, how many indices do we need to check with binary search in order to conclude that a number is NOT in L?a) 1b) 4c) 5d) 10

Short Answer 3 [1 pts]:

For the xSortLab image below, using mergeSort, how many passes through the list have we completed so far (using xSortLab's implementation of mergeSort)?a) 0b) 1c) 2d) 3e) 5f) 6g) 8h) 16

Short Answer 4 [2 pts]:

Mark each of the following statements as True or False. Assume that N is very large.
\square TRUE \square FALSE $\quad \mathrm{O}\left(\mathrm{N}^{* *} 0.5\right)$ is faster than $\mathrm{O}(\mathrm{N})$
\square TRUE \square FALSE $\quad \mathrm{O}\left(2^{* *} \mathrm{~N}\right)$ is faster than $\mathrm{O}\left(\mathrm{N}^{* *} 2\right)$
\square TRUE \square FALSE $\quad \mathrm{O}(100)$ is faster than $\mathrm{O}(\mathrm{N} / 100)$
\square TRUE \square FALSE $\mathrm{O}\left(\left(\mathrm{N}^{* *} 2\right)^{*} \log \mathrm{~N}\right)$ is faster than $\mathrm{O}\left(\mathrm{N}^{* *} 2\right)$
\square TRUE \square FALSE $\quad \mathrm{O}(\mathrm{N})$ is faster than $\mathrm{O}(\log \mathrm{N})$

Short Answer 5 [2 pts]:

Mark each of the following statements as True or False
\square TRUE $\quad \square$ FALSE \quad Checking for membership in a set is $\mathrm{O}(1)$
\square TRUE \square FALSE \quad Sets are immutable
\square TRUE $\quad \square$ FALSE \quad Sets can be dictionary keys
\square TRUE \square FALSE \quad Dictionaries and sets both use hashing

Short Answer 6 [3 pts]:

Mark each of the following statements as True or False
\square TRUE \square FALSE \quad We can use linear search on a list with negative numbers
\square TRUE $\quad \square$ FALSE \quad We can use binary search on a list with negative numbers
\square TRUE $\quad \square$ FALSE \quad We can use linear search on an unsorted list
\square TRUE \square FALSE \quad We can use binary search on an unsorted list
\square TRUE \square FALSE \quad We can use linear search on a list with duplicates
\square TRUE \quad FALSE \quad We can use binary search on a list with duplicates

Code Tracing 1 [5pts]: Indicate what the following code prints by completing the partial answer in the box below of the code. Do not place anything but your answer inside the box.

```
# This prints one set of 5 values
```

def ct1 $(s, d):$
$r=\operatorname{set}()$
for k in d :
if $d[k]$ in $s:$
r.add(k)
r.add(d[k]**2)
return r
print(ct1(\{0,2,4\}, \{1:2, 2:1, 3:2, 5:4\}))

Answer: $\{\ldots, \quad, \quad$ __________ \quad, \quad _____

Code Tracing 2 [6pts]: Indicate what the following code prints by completing the partial answer in the box below of the code. Do not place anything but your answer inside the box.

```
#This prints a single list with 6 integers.
```

def ct2(L):
if $L==[\quad]:$
return []
elif len(L) \% 2 == 0:
return [L[0]] + ct2(L[1:])
else:
return ct2(L[1:]) + [L[0]]
print(ct2([1, 2, 3, 4, 5, 6]))

Code Tracing 3 [6pts]: Indicate what the following code prints by completing the partial answer in the box below of the code. Do not place anything but your answer inside the box.

```
#This prints a single list with 6 integers.
```

def ct3(L, depth=0):
if len(L) < 2:
return [V * 10**depth for v in L]
else:
$i=\operatorname{len}(L) / / 2$
return ct3(L[:i], depth+1) + [L[i]] + ct3(L[i+1:], depth+1)
print(ct3([1, 2, 3, 4, 5, 6]))

Code Tracing 4 [6pts]: Indicate what the following code prints by completing the partial answer in the box below of the code. Do not place anything but your answer inside the box. \#This prints a single list with 6 integers.
def ct4(L):
return ct4Helper(L, [])
def ct4Helper(L, M):
if L == []:
return M
else:
M. append(sum(L))
return ct4Helper(L[1:], M)
print(ct4([1, 2, 3, 4, 5, 6]))

Answer:
[_ ,

Code Tracing 5 [6pts]: Indicate what the following code prints by completing the partial answer in the box below of the code. Do not place anything but your answer inside the box.
\# This prints one dictionary
\# containing two key/value pairs
def ct5(L):
d $=\operatorname{dict}()$
for i in range(len(L)): for j in range(i+1, len(L)):
if L[i] == L[j]: $d[i+j]=(i, j)$
return d
print(ct5([2, 1, 2, 3, 4, 3]))

Code Tracing 6 [6pts]: Indicate what the following code prints by completing the partial answer in the box below of the code. Do not place anything but your answer inside the box.

```
#This prints one string in the form of:
```

\#Foo<z=_, s=' \qquad '>
\#...but with the blanks filled in
class Foo(object):
def __init__(self, x, s):
self.z = x+1
self.s = s
def __repr__(self):
return f'Foo<z=\{self.z\}, s=\{repr(self.s)\}>'
def bar(self, other):
return Foo(self.z * other.z, self.s + other.s)
def ct6(k):
return $\operatorname{Foo}(k, \operatorname{str}(k)) . \operatorname{bar}\left(\operatorname{Foo}\left(k+1\right.\right.$, ' $\left.\left.^{\prime} \mathrm{wo}^{\prime}\right)\right)$
print(str(ct6(5)))

Answer: Foo<z= \qquad ' >

Free Response 1: Matrix Class [25pts]

Write the class Matrix so that the following test code passes. Hardcoding will not receive any credit. Your code must work in general, not just for the specific values in the test cases. We have provided headers and space for each of the methods you should write. Add the proper arguments and code for each.

```
def testMatrixClass():
    print('Testing Matrix class...', end='')
    m1 = Matrix([[1,2,3],[4,5,6]])
    assert(str(m1) == '<2x3 Matrix: [[1, 2, 3], [4, 5, 6]]>')
    assert(m1.rows == 2)
    assert(m1.cols == 3)
    assert(m1.getRow(0) == [1,2,3])
    assert(m1.getCol(0) == [1,4])
    assert(m1.getRow(5) == m1.getCol(42) == None) # handle out-of-bounds indexes
m2 = Matrix([[10,20,30],[40,50,60]]) # make another matrix
assert(str(m2) == '<2x3 Matrix: [[10, 20, 30], [40, 50, 60]]>')
m3 = m1.addMatrix(m2) # create new Matrix instance where each
    # value in m1 is added to the corresponding
    # value in m2
assert(str(m3) == '<2x3 Matrix: [[11, 22, 33], [44, 55, 66]]>')
# Be sure the previous operation was non-destructive:
assert(str(m1) == '<2x3 Matrix: [[1, 2, 3], [4, 5, 6]]>')
m4 = Matrix([[1]])
assert(str(m4) == '<1x1 Matrix: [[1]]>')
assert(m1.addMatrix(m4) == None) # handle mismatched dimensions when adding
print('Passed!')
```

(Answer FR1: Matrix Class on this page. Remember to add arguments in the parentheses!)

```
class Matrix:
    def __init__(
        ):
```

def __repr__(
):
(Answer FR1: Matrix Class on this page. Remember to add arguments in the parentheses!) def getRow ():
def getCol():
(Answer FR1: Matrix Class on this page. Remember to add arguments in the parentheses!) def addMatrix():

Free Response 2: Recursive Functions [20pts]

Part 1: The following recursive function takes a list L of integers, and non-destructively returns a new list M which is the same as L but with all the even numbers removed.

For example, if $\mathrm{L}==[1,2,3,4,5]$, the function returns $[1,3,5]$.

Fill in the blanks with the missing code (all blanks must be filled with a single line, statement or expression -- you may not add new lines to the code):
def removeEvens1(L):
if (L == []):
return []
else:
if L[0] \% 2 == 0:
\qquad
else:
return \qquad \# Blank 2

Part 2: The following function does the same thing, only in a different way. Once again, fill in the blanks so that this function works properly:

```
def removeEvens2(L):
    return removeEvens2Helper(L, [ ])
def removeEvens2Helper(L, M):
    if (L == [ ]):
        return M
    else:
```

if \qquad : \# Blank 1
\qquad
return removeEvens2Helper(L[1:], M)

Part 3: The following function does the same thing again, only this time it is destructive, so it returns None while directly removing the evens from L.
Fill in the blanks so it works properly:

```
def removeEvens3(L, i=0):
    if i >= len(L):
        return
    else:
        if L[i] % 2 == 0:
```

 else:
 removeEvens3(L, i)

Free Response 3: arrange(L) [10pts]

Note: This is a backtracking problem. Loops are allowed. You are provided with a partial solution to this problem, with a few parts removed.

Fill in the blanks with the missing code (all blanks must be filled with a single line, statement or expression -- you may not add new lines to the code).

Using backtracking, complete the function arrange (L, d) that takes a list L of integers and an integer d, and returns a new list M composed of the same values in L but rearranged so that the absolute difference between each two consecutive values in M is d or smaller. Return None if no such arrangement exists.

For example, arrange([1,5,2,-1], 3) can return [1,-1,2,5] because

- $\operatorname{abs}(1-(-1))==2$ and $2<=3$
- abs((-1) - 2) == 3 and 3 <= 3
- abs(2-5) == 3 and 3 <= 3

Note that other legal arrangements may exist. You may return any legal arrangement. Note that backtracking does not generate every possible arrangement of L .

Also, arrange([1,5,1,-1], 3) returns None, because there is no arrangement of values that works for this list.

Hint: We start with an empty list for M and keep trying to add one more value from L to M (and removing it from L if it is used in M), verifying that M still is a legal arrangement. Our solution uses destructive methods to add and remove elements from remainingList and resultSoFar.

Write your answer on the next page!

(This is part of FR3 on the previous page. Fill in the blanks!)

```
def arrange(L, d):
```

return solve([], copy.copy(L), d)
def solve(resultSoFar, remainingList, d):
if remainingList == []:
\qquad
else:
\#For each remaining element
for i in range(len(remainingList)):
\#Get element for next attempted move
$\mathrm{v}=$ remainingList[i]
if ((resultSoFar == []) or
remainingList.pop(i) \# remove v from the remaining list resultSoFar.append(v) \# and add it to the resultSoFar list

return None

Bonus/Optional Code Tracing 1 [1pts]

Indicate what this prints. Place your answer (and nothing else) in the box.
def bonusCt1(k):
def $f(n)$: return $n \% 10 * f(n / / 10)$ if n else 1
def $g(n)$: return $g(n / / 2)+[\operatorname{str}(n \% 2)]$ if n else []
def $h(n):$ return int(''.join(g(f(n))) or '0')
def $i(k)$: return $h\left(2^{* *} k\right)$ or $i(k+1)$
return i(k)
print(bonusCt1(10))

Bonus/Optional Code Tracing 2 [1pts]

Indicate what this prints. Place your answer (and nothing else) in the box.

```
def bonusCt2(L):
```

\# Hint: $\operatorname{str}([[1,2],[3,4]])==$ '[[1, 2], [3, 4]]'
if len(str(L)) > 128:
return len(str(L))
else:
return bonusCt2([[L],[L]])
print(bonusCt2([1,2]))

