Data Structures:
Trees and Graphs

EEN

A tree is a hierarchical data structure composed of nodes.

Root: the top-most node (unlike real trees, trees in computer science
grow downward!). Every (non-empty) tfree has one.

Parent: the node connected directly above the current one. Every node
(except for the root) has one.

Child: a node connected below the current one. Each node can have 0
or more.

Leaf: a node that has no children.

Depth/Level: the length of the path (edges) from the root to a node
(depth/level of the root is 0).

Tree Height: the maximum depth from of any node in the tree.

A tree commonly used in computing is a binary tree.
O A binary tree consists of nodes that have at most 2 children.
O Commonly used in: data compression, file storage, game trees

Binary Tree Example

34

7N
65 96

7N N
24 50 53

7N
43 37

Which node is the root?
Which nodes are the leaves?e

Which nodes are internal nodes?
What is the height of this tree?¢

Binary Tree Example

84 Level O
65 Q6 Level 1
24 50 53 Level 2
48 37 level 3
The contains the data value 84.
There are in this binary tree: nodes containing 48, 37, 50, 53.
There are in this binary tree: containing 84, 65, 96, 24

This binary tree has height 3 — considering root is at level 0,
the length of the longest path from root to a leaf is 3

Binary Trees: A recursive structure!

The yellow node with the key 65 can be viewed as the
root of the left subtree, which in furn has

O a left subtree of blue nodes
O aright subtree of orange nodes

In general, Binary Trees can be:
O Empty
O A roof node with
a left binary tree
a right binary tree

Binary Trees: Implementation

A common implementation of binary frees uses nodes
O Each node has a “left” node and a “right” node.

How to represent these nodes and pointerse With a Class (like @
Struct...)

/ 65 Level O

/ 24 \ 50 \ Level 1

VAR \

48 37 14 Level 2

Implement Using a List

We could also use a list to implement binary trees. For example:
© 1 2 3 4 5 6 7

- 1651241504837 | - |14

/ 65 N Level O

/ N

/ 24 \ 50 \ Level 1

VAR \

48 37 14 Level 2

Binary Search Tree (BST)

A binary search tree (BST) is a binary free with no
duplicate nodes that imposes an ordering on its nodes.

BST ordering invariant: At any node n with value K,

O all values of nodes in the left subtree of n are strictly less than
k

O all values of nodes in the right subtree of n are strictly greater
than k

Example: Binary Search Tree

BST ordering invariant: At any node with value k,
all values of elements in the left subtree are strictly less than k and
all values of elements in the right subtree are strictly greater than k
(assuming that there are no duplicates in the tree)

Example: Is this a BSTe

no yes

Insertion in a BST

For each data value that you wish to insert intfo the binary
search free:

O If you reach an empty tfree (must test this first, why<e), create
a new leaf node with your value at that location

O Recursively search the BST for your value until you either find
it orreach an empty free

O If you find the value, throw an exception since duplicates
are not allowed

Insertion Example

Insert: 84, 41, 96, 24, 37, 50, 13, 98

34

SN
41 96

SN N
24 50 78

SN
13 37

Binary Search Tree Complexity

] Tree 2

Tree 1 4 4

O(log n) O(n)

Relationship Data

From this...

TouchGraph

Relationship Data

To this...

B \@
G /

A
o o

Graphs

A graph is a data structure that contains of a set of vertices
and a set of edges which connect pairs of the vertices.

O A vertex (or node) can be connected to any number of other
vertices using edges.

O An edge may be bidirectional or directed (one-way).

O An edge may have a weight on it that indicates a cost for
traveling over that edge in the graph.

Unlike frees, graphs can contain cycles
O In fact, afreeis an acyclic graph

Applications: computer networks, transportation systemes,
social networks

Example Graphs

Ver’rex EQIQG

S S

O / o é/
()

Undirected Directed

Graph Implementation

We usually represent graphs using a table (2d list) where
each column and row is associated with a specific
vertex. Thisis called an adjacency mairix.

A separate list of vertices shows which vertex name (city,
person, etc.) is associated with each index

The values of the 2d list are the weights of the edges
between the row verfices and column vertices

O If there is not an edge between the two vertices, we use
infinity, or None, to represent that

C
O
O
e
C
O
)
O
O
O
04
C
O
O
O

g |1m|o
< | oo
S| 8|8
8 | N | 8
m O O
g |m|o
<t | o™
o| | 8
O~ |
mnm O O

from

O
m <
o o
~ _|_nl
- O — ~
A 0 = oo ™M
ISy
I -
IIIO
S:FOOA...N
0
n C NN N N
-— S O O ™~
O el
i 0 4
—+— > O
>
am
m Nlw| 8 | on|o
W
C Ol~N||O| ™
wl Mlo|lo|x| §
= L|o|lo|~|Ww
@, o
< m O N0

20

Graph Algorithms

Lots! Here are some examples.

There are algorithms to search graphs efficiently for a value
O Breadth-first search and Depth-first search

There are algorithms to compute the shortest path between
a start vertex and all the others

O Dijkstra’s algorithm

There are algorithms for operations research, which can be
used to solve nefwork flow problems

O For example, how to efficiently distribute water through a system
of pipes

21

Shortest Path (Dijkstra's algorithm)

Assign every node an initial distance (0 to the source, « for all
others); mark all nodes as unvisited

While there are unvisited nodes:
O select unvisited node with smallest distance (current)
O consider all unvisited neighbors of current node:
compute distance to each neighbor from current node
if less than current distance, replace with new distance
O mark current node as visited (and never evaluate again)

22

Dijkstra example

Dijkstra example

What does this assume?

24

