15-110 Lecture 2 CA-Authored Final Exam Review: Problem Set

Data and Expressions

1. What will the following lines of code print?

a) x = "34"

 y = x*3

 z = int(y)/2

 print z

b) a = 3.14159*3

 b = str(a)*2

 c = int(float(b[0:len(str(a))-2]))

 print c

c) a = 12

 b = 23

 c = 9

 d = 0

 print ((b-a)<c) and (c%d == 2)

d) m = "first"

 n = "second"

 p = n + "third"

 print m + "[\t]" + n + "\\\n" + p

e) s1 = "programming"

 s2 = "15-110"

 s3 = "CMU"

 s4 = s1[len(s2[1:len(s3)+1])::]

 print s4

2. Evaluate the following expressions:

a) 7 / 3

b) 7 / (-3)

c) (-7) / 3

d) (-7) / (-3)

e) 9 % 5

f) 9 % (-5)

g) (-9) % 5

h) (-9) % (-5)

i) 10 ** 2

j) 10 ** (-2)

k) 4 ** 0.5

l) 4 ** (-0.5)

m) 4 ** (1/2)

n) 4 ** (-1/2)

o) 2 * 4 % 5 + 2

p) (9 % 4) + (14 % 12) / 3 + 1

q) (2 * 6 / 3) % (2 + 1)

3. Write down if the following statements are true or false. If false, write a short explanation.

a) "abc" is not equal to "ABC"

b) "abc" is not equal to 'abc'

c) "sectionDIsTheBest"[-2] would crash.

d) If s is a string, then s and s[:] reference different objects.

4. State the type of the variables that result from the following expressions:

a) 2*5 == 10

b) int(2/3)*1.0

c) “Kosbie”*4

5. Write down in a few lines of English what the follow methods do in general.

n is a number

def mystery1(n):

s = str(float(n))

i = None

for x in range(len(s)):

if s[x] == '.':

i = x

return s[:i]

n is an int, n >= 0

def mystery2(n):

c = 0

t = 1

while (n > 0):

c += 1

n /= 2

while (c > 0):

c -= 1

t *= 2

return t

6. You are baking gingerbread cookies for your friends. Each baking pan can hold at most 12 gingerbread cookies at a time, and you can only bake one pan at a time. The time to bake is 9 minutes. Assuming that each person will take 2 cookies, write an expression to find out:

a) The shortest time it will take you to bake enough cookies for n people.

b) If you’re only allowed to bake completely full (12 cookies) or exactly half full (6 cookies) pans, how many people will not get any cookies given n people

Loops and Conditionals

1. Recursive vs Iterative

The code below computes a mathematical function. Rewrite this function using loops and conditionals instead of recursion. The output for both functions should be the same.

def f(n):

if n<=1: return 1

return n*f(n-1)

2. Mystery Functions: In less than 20 words, what are the following functions doing in general

a) Assume that s is a string consisting of lower case letters, and n is a non negative number

def Mystery1(s, n):

b = ""

for c in s:

b = b + chr((ord(c)-ord("a")+n) % 26 + ord("a"))

return b

b) Assume that n is a positive integer

def Mystery2(n):

if n <= 1: return

for i in range(2, n+1):

if n%i == 0 and helper(i): print I

def helper(i):

for x in range(2, i/2+1):

if(i%x == 0): return False

return True

c) Assume that s is a string of letter characters

def Mystery3(s):

if len(s) < 2: return True

f = True

if s[0] > s[1]: f = False

for i in range(1, len(s)):

if f and s[i-1] > s[i]: return False

if (not f) and s[i-1] < s[i]: return False

return True

d) This function only takes in positive integers

def mystery1(n):

if (n % 2 == 0):

return n/2

else:

return -(n-1)/2

e) What will the following code print?

assume n a string of integers with the first

digit within 1-7, ie "1234" or "5178000"

def f(n):

 if (n == None or len(n) != 5):

 return None

 lst = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]

 d = lst[int(n)/(10**(len(n)-1))-1]

 s = n[1:]

 m = ""

 # see how you hate these unknown variables?? This is an EVIL CA taking revenge MUAHAHAHA

 while (s != ""):

 m += s[:2]

 s = s[2:]

 if (s != ""):

 m += "/"

 return d + " " + m

print f("51212") #hmm... 1:00 pm?

print f("12312156"[2:7]) # =)

3. CMU's definition of sexy...

a) A number n is a sexy prime (I'm not making this up!) if n and n+6 are prime. Having that in mind, write a function isSexyPrime to check and see if a given tuple (m,n) is sexy. For example, isSexyPrime((5,11)) should return True and both isSexyPrime((5,7)) and isSexyPrime((24,30)) returns False. You are encouraged to use helper functions. You may assume the tuple will consist of positive integers.

b) Write a function nthSexyPrime that takes an integer n and returns the nth occuring sexy prime tuple. For example, nthSexyPrime(6) should return (23,29). You may use any function you wrote in part (a).

4. True/False questions

a) If you don't know how many times you are looping through a condition, you should use a while loop.

b) In Python, empty strings, empty lists and empty dictionaries are False

c) When looping through a list and checking if every element of the list satisfies a condition, we should return False outside of the loop.

d) range(6) creates a list.

5. You decided to apply for a position as a 15110 CA (and got accepted =D)! One of your students come to you with the following code:

this function takes in two lists of integers and return true if and only if

every number in the first list can be found in the second. No error checking

required, yet...

def iliketogivebadfunctionnames(x,y):

 for i in range(x):

 if i not in range(y):

 return False

 else:

 return True

Another student comes with the following problem:

this function takes in a list of integers and removes all numbers which are

multiples of 3. This function is should be non-destructive.

def donteverdothis(x):

 for i in range(x):

 if x[i] % 3 == 0:

 x.remove(i)

 return x

ignoring the fact that no error checking was performed, what is (are) the bugs?

6. Write a function primeRange(x,y) that prints out all the prime numbers between x and y, write two methods, one with a for-loop, one with a while loop (write isPrime too), which is better to use?

7. Practice Tracing

def a(x,y):

 k = 8

 for i in range(2):

 for j in range(3):

 while(x<y):

 k = k +1

 y = y/x

 print x,y

 return k

print a(3,6)

print a(2,9)

Recursion

1. True/False:

a) The 'base case' in a recursive function often has a recursive function call.

b) The only way to use recursion in a program if for a function to call itself.

c) If you can solve a problem in a recursive way and a non-recursive way, it is always better to choose the recursive way.

2. Short Answer: List two pros and two cons for recursion.

3. See the recursion programming problems included in the main folder. Answers are included there.

1D and 2D Lists

1. Mystery methods

a)

def m1(n):

 a = [0]

 for i in xrange(n):

 a = a + a

 return len(s)

b)

#x is a 2D rectangular list of integers

def m2(x):

 s = [0] * len(x[0]);

 for i in range(len(x)):

 for j in range(len(x[0])):

 s[j] += x[i][j]

 return s

c)

def hamSandwich(myList):

 # assume the input parameter is a 2D list of ints

 r = len(myList)

 c = len(myList[0])

 s = 0

 for x in range(r):

 m = myList[x][0]

 for y in range(c):

 v = myList[x][y]

 if (v > m):

 m = v

 if (y == c-1):

 s += m

 return s/r

2. Tracing code

a = ["yes"] * 3

b = ["foo"] * 3

print a

for i in range(0, len(a) + len(b), 2):

 b = b[:i] + [a[0]] + b[i:]

print b

a = 0

b = 2 * [a]

c = 2 * [b]

print c

a = 1

b[1] = 1

print c

l = [3, 5, 2, 7, 4, 1]

for x in l:

 if (x % 2 == 1):

 print x/2

3. Write a function removeDuplicates(a) for the 1D list "a". It destructively removes duplicate values from "a". Do not create any new lists! You may not use a.remove()!

4. Write a function that takes in a *2D* list as a parameter and returns the median value in that list.

Dictionaries

1. d is a dictionary listing the names of the Monty Python troupe members. The keys are last names, and the values are their first names.

d = dict([("Gilliam", "Terry"), ("Palin", "Michael"), ("Cleese", "John"), ("Chapman", "Graham"), ("Jones", "Terry"), ("Idle", "Eric")])

a) Add the name 'Monty Python' to the dictionary.

b) Find out the value associated with "Python" and remove it from the list.

c) Print all Monty Python members with the first name Terry.

2. What are two ways we discussed to make sure your program won't crash when you are trying to look something up in a dictionary?

3. What operation is the following method performing?

def mystery1(d1, d2):

 u = { }

 for k in d1:

 u[k] = True

 for k in d2:

 u[k] = True

 return u

4. What will the following print:

fruit = {}

fruit["apple"] = "red"

fruit["pear"] = "green"

fruit["carrot"] = "orange"

fruit["grape"] = "green"

fruit["apple"] = "green"

for key in sorted(fruit.keys()):

 print key + "s are", fruit[key]

d = { 0 : 1, 1 : 2 , 2 : 2 }

for x in d:

 print x, d[d[x]]

5. What is the defining feature of a dictionary?

6. Why is it not possible to sort a dictionary in place?

7. When should the dictionary function "get" be used to retrieve a value instead of "dictionary[key]"?

8. Create a function printSparseMatrix that takes a sparse matrix, represented as a dictionary where the keys are (row, col) tuples, and prints it out, with each entry separated by commas, and each row on its own line. You can assume that the dictionary keys 'rows', and 'cols' will specify the number of rows and columns in the matrix, and that a non-entry has a value of 0.

9. Write a python function, countVals(dict) that takes a dictionary and returns a new dictionary that maps each value to the number of times it occurred in the original dictionary.

Example: countVals({"seahorse": 0, "kangaroo": 2, "person": 2, "spider": 8, "cow": 4, "fly": 6, "horse": 4, "pig": 4}) = {6: 1, 0: 1, 2: 2, 4: 3, 8: 1}

10. Tracing & Fun

 01 x = {}

 02 x["robinson"] = 42

*03 x["robinson"]

*04 x

*05 x["roberts"]

*06 x.get("roberts")

 07 x["roberts"] = 31

 08 for i in x:

*09 I

*10 x.keys()

*11 x.keys()[0]

*12 x.values()

*13 x.values()[0]

a) For each of the following line numbers, choose "int", "str", "dict", "list", "NoneType", or "KeyError" for the type of value that is returned or thrown by the line:

03

04

05

06

09

10

11

12

13

b) Write Python code to make a list, numbers, of numbers in ascending order by name from x (this should make the list numbers = [5, 31, 42, 38])

c) Write Python code to make a list of names in ascending order by numbers (["dimaggio", "roberts", "robinson", "schilling"])

11. True/False Questions

a) Dictionaries may have multiple occurrences of the same key

b) Dictionaries may have multiple occurrences of the same value

c) Dictionaries can be copied using copy.deepcopy

d) The line "print (3 in {1: 1, 2: 3})" prints "True".

Graphics, Events, and Animations

1. Free Response: Assuming the usual run function with a 300x300 canvas, write an animation that first displays a square with a size of 260 x 260 that is centered in the canvas, and a ball of radius 20 that is centered on the top left corner of the square. When the user presses the right arrow once, the ball moves all the way to the top left corner of the square and then it stops there. At this point, when the user presses the down arrow once, the ball moves all the way to the bottom right corner of the square and stops there. Then, from this point, when the user presses left once, the ball moves all the way to the bottom left corner and stops there. At this point, when the user presses up once, the ball moves all the way to the top left corner and stops there. The ball continues to move in the clockwise direction as long as the program is running.

2. Mystery Code and Tracing: Draw what mysteryX does given cx, cy and canvas. Trace these functions below and draw what it shows on canvas when the user clicks on (150, 20), (20,280) and then (280,280) assuming that you have a 300 x 300 canvas with a regular run function.

def mousePressed(event):

canvas = event.widget.canvas

Cs = (event.x,event.y)

canvas.data["Cs"].append(Cs)

redrawAll(canvas)

def mysteryX(canvas,cx,cy):

canvas.create_arc(cx -20,cy - 20, cx+20, cy+20,start = 60, extent = 60, fill = "black")

canvas.create_arc(cx -20,cy - 20, cx+20, cy+20,start = 180, extent = 60, fill = "black")

canvas.create_arc(cx -20,cy - 20, cx+20, cy+20,start = 300, extent = 60, fill = "black")

canvas.create_oval(cx - 5, cy - 5, cx+5, cy+5, fill = "white", outline = "white")

def redrawAll(canvas):

canvas.delete(ALL)

Cs = canvas.data["Cs"]

for C in Cs:

(cx, cy) = C

mysteryX(canvas,cx,cy)

def init(canvas):

canvas.data["Cs"] = []

a) You are creating a 2D shooter game where you steer the angle of a canon at the center of the screen, and you have to fight off enemies coming your way by shooting tiny, circular, red bullets on them (radius of bullet is stored in canvas.data["bulletRadius"]). Every time you press space, your cannon is shooting a bullet by calling the shootBullet -function you just wrote. Your next job is to write the drawBullets -function that works with the same data structure you assumed in shootBullet.

def shootBullet(canvas):

if (canvas.data["mystery"] > 0):

 return

canvas.data["mystery"] = 5

bullets = canvas.data["bullets"]

angle = canvas.data["angle"]

speed = canvas.data["bulletSpeed"]

xCenterPos = canvas.data["canonX"] + int(canvas.data["canonLength"] *angle[0])

yCenterPos = canvas.data["canonY"] + int(canvas.data["canonLength"] *angle[1])

bullets.append(((xCenterPos, yCenterPos), angle, speed))

canvas.data["bullets"] = bullets

b) You trusted one of the CA's to create the pause function in your game, but it turns out that he screwed up, and the game now freezes on the pause screen. You decide to intervene and fix it yourself before the CA does further damage. What is wrong with the code and how can you fix it?

def keyPressed(event):

 canvas = event.widget.canvas

 if (event.char == "p"):

 canvas.data["pause"] = not canvas.data["pause"]

 (... more code …)

 redrawAll(canvas)

def redrawAll(canvas):

 canvas.delete(ALL)

 if (canvas.data["pause"]):

 drawPauseScreen(canvas)

 return

 (... more code …)

def timerFired(canvas):

 if (canvas.data["pause"]):

 redrawAll(canvas)

 return

 if (canvas.data["mystery"] > 0):

 canvas.data["mystery"] -= 1

 moveBullets(canvas)

 moveEnemies(canvas)

 generateEnemies(canvas)

 handleHits(canvas)

 redrawAll(canvas)

 delay = 750

 canvas.after(delay, timerFired, canvas)

c) Short questions:

i. Is the first call to redrawAll in timerFired (the one in the if-statement) necessary? Why, or why not.

ii. If we want the movement in our game to be more smoothly, what can we change in our code?

iii. Rename the variable 'mystery' to something intuitive

iv. How many bullets are allowed simultaneously with this design?

v. What command can you use to remove a single bullet, and

vi. In which function(s) called by timerFired would we use it?

vii. We here store the angle of the cannon as a tuple of two floats that represent x and y in the unit circle. This makes it easy to write our moveBullet and our drawCannon functions. Which necessary functionality(/ies) would be easier if we stored it as an int containing the angle (0-359)?

